ubC s539. 3

ON THE THEORY OF DIFFRACTION OF LINEAR VISCO . ELASTIC WAVES
PMM Vol. 42, N¢ 1, 1978, pp. 159-167
1. G, FILIPPOV
{ Moscow )
{ Received March 11, 1977)

Two ~dimensional problems of diffraction of visco~elastic waves on rigid con-
tours of arbitrary form especially on rectilinear cuts, are studied in the linear
approximation. Solutions are obtained using a generalization of the Volterra
method .

The problems in question were studied in [1—7] and solved either using the
Volterra method, or some other methods,

1. Formulation of the general problem of diffraction of vis-
co-elastic waves and its solution. We shall assume that the medium is
isotropic and instantaneously elastic and, that the kernels of the visco-elastic operators
are arbitrary. We shall express the relations between the stress and deformation tensors
in the form of the integral Boltzmann relations

o= L(e) +2M (&) (i=24), Om =M (&) (L.1)

where L (f) and M () are linear integral operators, while %; (@) and Ymj
are continuous and discrete functions of the relaxation times

t
LE=2[t0—-{ne—veed]
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M@©=w[eO—SE—nLE ]

) .

1) = §hj(a) exp(—~ <) da + 3 exp(— =) (=12
0 m=1

Introducing the potential functions @ and W, we can reduce the equations
of motion to a system of integro-differential equations ( @ and b are the velocities
or propagation of the longitudinal and transverse elastic waves
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166 I.G ., Filippov

Let us consider the problem of diffraction of an arbitrary visco-elastic wave on the
contour € (Fig,1). We have two basic types of boundary conditions at the contour

un = Us == 0 (C) (1'3)
Un = One = 0 (C) (1.4)
corresponding to the case of a contour rigidly bound to the surrounding medium, and to

the case when there is no friction between the medium and the contour, Here 7 and
$ denote the normal to and the arc of the contour C.
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The following conditions hold at the fronts Se and "S, of the reflected longi -
tudinal and transverse waves

O =@, (S5), ¥ =¥, (S) (1.5)

where @, and W, are the potentials of the incident visco-elastic wave.In what
follows, we shall assume that W', = (. Let us set

®=q)+q)01 l}f:»\p

where @ and 1 are the potentials of the diffracted waves. The potentials ¢ and
P can be found from the integro~differential equation

Lo(A¢) = o 22, My (Ay) = o5 2 (1.6)
with the boundary and initial conditions
or
B vy=0 (O (1.8)
¢=0 (Se) $=0 (S
o= == =0 (<0
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Let us consider the process of diffraction of a longitudinal visco-elastic wave in the
space (x, ¥, 1) using the methods of [5,6]. As in [3],the approximate solution of
the problem (1,6) —(1,8) in the (z, y, f)-space has the form

1 a I5; d
¢ (2o, Yo, to) = B Ly {'gg}' SS Ly (‘P —avni — Vg ‘T‘E’) dQ}
ia
1 0 ov o
P (Z0s Yo, to) = 5 Mo {-5;; SS M, (1I7 — = b 791,':-> dQ}
2

1b

(1.9)

o

t s
L@ =t+2\t@d, cn=at@da+ ) vt
0 ] m=1

t oo My
Mu@ =0+ 2(t@d en={an@dat Y vt
0 0 ms=}

h{o) = au (a) + 280k, (a), Vm = Gg¥m1 -+ Zﬁo’}’mz

where X, and 25 denote the parts of the cylindrical surface 2 (Fig,2) in
the (z, y, t) -space intercepted by the cones of influence a2 (t, — t)2 — r? = 0,
B2ty — 1) —1r2=0, r*=(z, — z)2 4 (Yo — ¥)* from an arbitrary point
(2o, Yo, Lo), while U and Up represent the fundamental solutions of the integro-

differential equations (1.6) v
[

Ve (.T, Y, l; Zos Yo to) = S q)c (to b t, rcha) da (c = q, b)
1]

(Dc (t, §) = L(n) {Mexp [— ]/-_—Pi’(_?___]}

‘P t—f.(p)

where L® (L) is the inverse Laplace transform, Jq (P) and f, (p) are Laplace
transforms of the functions oof; (£) + 2Bof2 (1) and /2 (f), and V, is the Volterra
function of the corresponding wave equation [5].

For a Maxwellian body , in particular, we have

v
ty—1t
[ 228 (.’L‘, Y, t; Zos Yos tO) = exp <W 021’ ) S Io %
¢

[Tf:? Ve (t, — £)2 — r?ch? a} dao

where 1t denotes the relaxation time, When the bodies are elastic and 1, (¢) =
75 (1) = O functions v, and v, become the Volterra function.
When friction is absent between the contour € and the medium, the potential
Y =0 and only the longitudinal wave is reflected.

Since the values of the functions @ and ¥ onthe contour C are not known,
it follows that a limiting passage of the point (%5, Yo, fo) to the surface X yieldsa
system of integral equations for determining ¢ and 1 on X. Solving these
equations for ¢ and P on Z followed by substitution into(1,9), yields a solution
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for the diffraction problem. Thus the general problem of diffraction of a visco-elastic
wave can be reduced to that of obtaining a solution of the type (1, 9) of the Volterra
equations for ¢ and Y on X .

We shall consider those specific diffraction problems, which can be solved in quad-
ratures using the general formulas (1.9).

2, Diffraction of a visco~elastic wave on a semi-infinitecut,
Before solving the diffraction problem, we shall consider a reflection of a visco -elastic
cylindrical wave from an infinite wall, We direct the z -axis along the wall,and the

Y -axis normally to it (Fig,3),and replace » in(1,9) by y ,
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The surface X in the (Z, ¥, ) -space is represented in this case by the half-plane
t >0, —oo << x << oo the front edge of which is bounded by the curve

1(20,0)=0 (&1
where f(z, y,t) = O denotes the frontof the incident longitudinal visco-elastic wave.

Consider the point  (zy,— ¥,, ;) 2nd apply the formulas (1,9) aty > 0. Since
this point lies outside the region y > 0, the formulas (1, 9) yield

0= 5 o [y o0 5= o ) ) @

1a

0=—21?wm{ S\ M, (¢ Iy, 6::) dq}

T
Ver (1’, Y, 1 Zoy Yoo to) = Ve (32, Y, L5 Zor— Yo to)
It is evident that when y = Q , the functions ve and v, satisfy the conditions
Uer = Vg, avcl/ay = _avc/ay (v =0)

Consequently when y = 0 and d¢/0y and 0V/dy are specified, then combining
the right-and left-hand sides of the formulas (1.9) (7 = y)  and(2.2) yields

@ (o, Yo, to) = — Lan {aito §S Va _BLZ?(:V) dq} (2.3)
la

¥ (20, Yo 1) = — = Mo {0, 2208 g}
Z1p

Similarly, by specifying @ and ¢ on X we obtain
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1 9 (0 OLy(vg)
CP(xo,ymto)=—n'Lo1 {'5}:;5 O(U ) d } (2.4)

! 6 dM, (v
‘P(xo, Yo, to) = —"n".ﬂfm a—~ SS 6.;/(“)) dq]]

b

In particular, if the friction at the wall is zero, the potential P = 0 and the
first formula of (2.3) yields an exact solution of the problem in quadratures without the
need to reduce it to a system of integral equationsin ¢ and Y on I .
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Let us now conctruct the solution of the diffraction problem on a semi-infinite cut,
Let a longitudinal wave defined by the potential @, (z, y, t) (Fig.4) fall on the
semi-infinitecut y = 0, 0 {2 <C 00. Thesurface I in the (z, y, )-space is
represented by a quarter of the plane, (Fig,5) the front edge of which is bounded by the
curve (2,1). We assume that the cut is rigid and the friction between the cut and the
medium is zero, Then + = 0 and the problem reduces to that of determining the
potential @ satisfying Eq, (1,6) together with the boundary and initial conditions

o9 _ 9, % _o (2.5)

T oy =0.0<z00) = =

Let us divide the surface Z into two parts, (1) and (2), as shown in Fig, 5, When
the potential ¢ is acted upon by the points of the region (1), we can use for ¢ the
first formula of (2,3), i.e.

@ (Lo, Yo, Lo) = —:;“Lox {_6% SS va—a%j—w dq} (2.6)
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Similarly, under the action of both regions, {1, ) and (2), we have for ¢

@ (o, Yoo to) = —“Lox{ a0 SS Vg 0Lod§¢) d }

3%

(2.7)

1a
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where 0, is the partof O in the plane y=0 lying outside 2 (see Fig,5) on
which the quantity 0¢/dy  is not known,

When y ==0, we find by virtue of the first condition of (2, 5) that ¢ isan odd
function of the coordinate y , therefore ¢ = 0 on o.

To find 8¢/dy at the points of ¢ we perform a limiting passage of the
point (z,, y,, t,) to the surface o. We have

0= —i—Lm {-af—o SS Vg aLg;(P) dq}

or Zu+to,
¢ ov, OLy(g)
- §
Zu1t+910

Changing the order of integration in the inner integrals of the right - hand side of
(2.8), we reduce it to the form

_92 Qa (tOlt; z‘O’m) — (2.9)
ElleSdm % .Va'z(t"—'t)2__'(7"0"'"x)2 dq O
Qaltos t;x0, ) = [1 — fo(0) + fo(to — ¢t — |20 — z|)] X
Va

{(D“ (o —t,tg—t) + V a* (to — 1) — (2 — 2)? S a:t)a da}
foto—t— |z —z|) —fo (0) =

to— |Xo—x|
[oofy (¢ — &) 4~ 2Bof2 (¢ —&)] dE
i
where due notice has been taken of the fact that the quantity  dv,/0%, is equal to
the ratio of the term within the curly brackets in the expressions for ¢, , to
V@@ — 0 — (@ — 2
Using the intrinsic coordinates

p=at+z, v=at —=zx (2.10)

we write the formula (2, 9) in the form

(2.11)

<o

B W . vo .
°a a0, Qoo (o Bive V) Quq (Mo, 1 Vo, V)
S —_— {— S 3y —}— S 4 V d‘v} =
dVm—p L Vve—v D Vo — v

Qg (o B Vo, v) = Q, (to, 15 %o, )

where 2z =0¢/0y on o, and v = A (n) is the equation of the front edge of
Z  in the coordinates(2, 10).
It is clear that (2,11) is 2 double integral Abel equation in z , Solving this
equation we obtain

vo

150 .
i S dv y 0@0 Qoo (Mo- o3 v, E) it (2.12)

ov _ dy, .
P VY 4y Vv—¢

1
Z = ——
1

Qo (Hos Bos V. Vo) =1
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Substituting the value of 2 into the right-hand side of the formula (2. 7) and per-
forming the necessary transformation , we obtain the final expression for ¢ under the
action of the points of the regions (1) and (2)

P (Zos Yo, Lo) = Lm{ A SS Va 3Loa;®o) dq} (2.13)

1a— Zog

The region 234 — Xy, shown in Fig, 5 is called the equivalent domain of in~
tegration. Formulas (2, 6) and (2,13) yield the solution of the diffraction problem in
quadratures, and (2, 13) determines the potential @ with the reflected and diffracted
waves both taken into account,

Example. Let the incident wave be plane and generated by the pressure F (¢ — t,)
applied at the points of the straight line
zsiny+ycosy4 =0 (y>0,t; <0
where £, is the distance between the straight line and the front point of the cut,
Using the solution of the problem and assuming that the medium complies with the
Maxwell's model, we obtain the following expression for the stresses o;; in the reflec-
ted wave defined by (2,6):

2 2
S, = 8in%y Z Qj(x,y, 1), S,y = COS? vZ Q; @ v, 1)

=1 i=1

(3.14)

6, =sin2y Z (— 1) Q; @, y, 1), T, =%siny 4 ycosy
j=1

e =—enn (i) (i) (- ) ¢
i

S O I ES

x,/a

]da

The formula (2, 14 ) contains the relaxation time <+ which determines the decay of
stress with time and distance,

8.Diffraction of a visco-elastic wave on a cut of finite length.
Let us extend the result of Sect, 2 to the case of a cut of width I. In this case the
half strip of width ! inthe (x, y, t) -space (see Fig,6) on which the boundary
condition (2, 5) has the form

09/0y = — 0Dy/0y (y=0,0<z <))

will represent the surface Y .

Let us divide the surface X , as shown in Fig, 6, intothe regions (1) — (3), When
the potential @ isunderthe influence of the points of the region (1) orof (1) and (2),we
obtain @ from the formulas (2.6)and (2, 13 ), When the points of (1) and (3) exert their
influence, we also have

@ (Zo, Yo, to) ——Lm{ > S_S v aLgSDo) g }

la 2a
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where the region 214 — 3y, takes into account the diffracted wave from the right-
hand end of the cut,

We determine ¢ in the same manner when the points of the regions (1) — (4)
exert their influence, and we have

¢ (Zo, Yo, Lo) = —:?Lm {'a—i)- SS Ua*al%gﬂ dQ}

We obtain @ when the subsequent diffracted waves are taken into account, in
the same manner. Using the known values of the potential ¢ , we can now deter-
mine the components of the displacement vector and stress tensor,

We can pose another problem related to the problem in question.

Let a transverse shear wave in which the displacement is perpendicular to the

(x, y) -plane fall on a cut of finite length, Also in this case only the shear wave will
be reflected,

The problem can be reduced to that of determining the displacement W directed
perpendicularly to the (z, y) -plane. The displacement satisfies the second equation
of (1, 2) as written for the transverse potential 4, and the boundary and initial con-
ditions

ow

Gr=0 O W=W. (S

0
W=Wo G =Ge<o
Setting W = ¢ 4 W, we obtain, for the perturbed displacement of ¢, a pro-
blem analogous to the problem of diffraction of a longitudinal wave on a finite cut
without friction: we must only replace the operator L, ({) by M, (L) and the vel-
ocity a by the velocity p. Other problems of diffraction can also be solved using
the methods described in Sect, 1 and 2.

Note. In the continuous electromagnetic media with a finite specific conduct -
ivity o , the wave field is described by the Maxwell's equations,
For the media with finite conductivity, in particular for metals, the current density
i is proportional to the electric field intensity E , i.e, j= oE. We can intro-
duce for such media a vector function A according to the formula ( B is the mag-
netic induction vector and ¢ denotes the speed of light)

1 04
B =rot A, E:——C—a—t, divA =0

and the Maxwe!ll's equations will then reduce to a single equation

4ruc  0A ep  9%A (3.1)
M=—""Zrt+ta o
where & and p are the dielectric constant and magnetic permeability of the me -
dium,
Equation (3. 1) is equivalent to the equation of propagation of longitudinal or
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transverse waves through a visco-elastic body, the material of which complies with the
Maxwell's model, The term containing 9A /8t 1leads to the appearance in the sol-
ution of a decaying multiplier, and the latter will depend, in general, not only on time
_but also on the points belonging to the space. The visco-elastic media experience the
same phenomena,

Equation (3.1) can be reduced to the form

ep 9%A
LAY = 1

1 — 4
Lx(C)=C(t)—S—re1p(— tra)c(i_)dz, T= 25
0

and the quantity t is equivalent to the relaxation time in the visco-elastic Maxwellian
body .,

Thus, since the equations describing the process of propagation of the visco-elastic
and electromagnetic waves through the media with finite conductivity are equivalent,
it follows that many results concerning the wave propagation and diffraction problems
in visco-elastic media can be transposed to the corresponding problems in electro -
magnetic media,
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