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Two-dimensional problems of diffraction of visco-elastic waves on rigid con- 
tours of arbitrary form especially on rectilinear cuts, are studied in the linear 
approximation _ Solutions are obtained using a generalization of the Volterra 

method. 
The problems in question were studied in [l-7] and solved either using the 

Volterra method, or some other methods. 

1. Formulation of the general problem of diffraction of vis- 

co-elastic waves and its solution. We shall assume that the medium is 
isotropic and instantaneously elastic and, that the kernels of the visco-elastic operators 

are arbitrary. We shall express the relations between the stress and deformation tensors 

in the form of the integral Boltzmann relations 

crjj = L (e) + 2M (ejj) (j = Z, y), 0, = -Vf (E,,) (1.l) 

where L (5) and &f (5) are linear integral operators, while h, (a) and ymj 
are continuous and discrete functions of the relaxation times 

L (5) = h pi: (2) - j fr (t - E) P (E) %] 

M (5) = In [t @I - 5 fz (t - E) 5 (%) e] 
fj(t) = rhj(Ct) eX~(-~ dU + u t ) 

0 

g $L!xp(-6) (j=1,2) 
m=1 m 

Introducing the potential functions @ and \y, we can reduce the equations 
of motion to a system of integro-differential equations ( u and b are the velocities 

or propagation of the longitudinal and transverse elastic waves 

Lo (5) = 5 (t) - \ faofl(t - E) + 2Bof2 (t - 8 I 5 (8 G 
0 
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Let us consider the problem of diffraction of an arbitrary visco-elastic wave on the 
contour c (Fig. 1). We have two basic types of boundary conditions at the contour 

un = v, = 0 (C) Il.3 > 

U, = 0n.s = 0 (C) (I.41 

corresponding to the case of a contour rigidly bound to the surrounding medium, and to 
the case when there is no friction between the medium and the contour. Here n and 

.E denote the normal to and the arc of the contour C. 

Fig. 1 Fig. 2 

The following conditions hold at the fronts S, and -so of the reflected longi - 

tudinal and transverse waves 

@ = @)o (SF), y = yv, (&) (1.5) 

where CD, and Y, are the potentials of the incident visco-elastic wave. In what 

follows, we shall assume that Y, = 0. Let us set 

a, =(p$_%, y=qJ 

where cp and $ are the potentials of the diffracted waves. The potentials 9 and 

$J can be found from the integro-differential equation 

with the boundary and initial conditions 
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Let us consider the process of diffraction of a longitudinal visco-elastic wave in the 

space (3, g, I) using the methods of [5,6]. As in 131, the approximate solution of 
the problem (1.6) - (1.8 1 in the (x, y, t) -space has the form 

where Z ra and xlb denote the parts of the cylindrical surface 2 (Fig, 2) in 
the (z, y, t) -space intercepted by the cones of influence a2 (to - 2)2 - r2 = 0, 

b2 (2s - 1)2 - r2 = 0, r2 = (to - 2)” + (y, - y)” from an arbitrary point 

(zo, Hot to)? while U, and ub represent the fundamental SolUtiOns of the integro- 
differential equations (1.6 ) 1’ 

C 

UC (2, Y, t; x07 Yo, to) = s 0, 00 - t, r ch a) da (C = U, b) 

0 

(J), (& E) _ L(O) 

- i 

v-l - f c (p) 
‘P exp - 1/l :E;C (PI 

[ II 

where L(‘f (5) is the inverse Laplace transform, ja (p) and fa (p) are Laplace 
transforms of the functions aofl (1) -j- 2flofz (1) and 12 (t), and ‘v, is the Volterra 
function of the corresponding wave equation C5 1, 

For a Maxwellian body, in particular, we have 

27, (5, 9, t; x0, yo7 to) = e=p (- q) 1 10 X 
0 

[& t/c” (to - t)” - ra ch2 u] da 

where z denotes the relaxation time. When the bodies are elastic and 11 (4 = 
1s (2) = 0 functions v, and t$, become the Volterra function. 

When friction is absent between the contour c and the medium, the potential 
gEE:o and only the longitudinal wave is reflected. 

Since the values of the functions ‘p and I# on the contour c are not known, 
it follows that a limiting passage of the point (zo, go, ts) to the surface 2 yields a 
system of integral equations for determining g, and 9 on 2. Solving these 

equations for ok and ‘II, on X followed by substitution into( 1.9), yields a solution 
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for the diffraction problem. Thus the general problem of diffraction of a visco-elastic 
wave can be reduced to that of obtaining a solution of the type (1.9) of the Volterra 
equations for Cp and ‘$ on Z . 

We shall consider those specific diffraction problems, which can be solved in quad- 

ratures using the general formulas (1.9 ) . 

2, Diffraction of a visco-elastic wave on a semi-infinitecut 
Before solving the diffraction problem, we shall consider a reflection of a visco -elastic 
cylindrical wave from an infinite wall. We direct the ST -axis along the wall, and the 

Y -axis normally to it (Fig. 3 I, and replace n in (1.9) by y , 

0 s?T 

Fig .3 Fig. 4 

The surface 2 in the (z, Y, 2) p -s ace is represented in this case by the half-plane 

1 > 0, -oo<X<~ the front edge of which is bounded by the curve 

1 (5, 0, 0 = 0 
(2.11 

where f (5, y, t) = 0 denotes the front of the incident longitudinal visco-elastic wave. 

Consider the point (x0,- y,, to) and apply the formulas (1.9 ) at Y > 0. Since 

this point lies outside the region y > 0, the formulas (1.9 1 yield 

L (2.2) 

It is evident that when y=o * the functions uCl and u, satisfy the conditions 

V,l = UC, %PY = - %Py (y = 0) 

Consequently when y = 0 and &play and a$/ay are specified, then combining 

the right-and left-hand sides of the formulas (1.9 1 (n = Y) and (2.2 > yields 

Similarly, by specifying 9, and 4 on Z we obtain 
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(2.4) 

In particular, if the friction at the wall is zero, the potential 9 ZG 0 and the 

first formula of (2.3 > yields an exact solution of the problem in quadraturea without the 
need to reduce it to a system of integral equations in cp and I# on X . 

u X u X 

Fig. 5 Fig. 6 

Let us now conctruct the solution of the diffraction problem on a semi-infinite cut. 
Let a lon~~dinal wave defined by the potential @a (5, y, t) (Fig. 4) fall on the 

semi-infinite cut y = 0, 0 < z ( 00. The surface II in the (5, y, Q-space is 

represented by a quarter of the plane, (Fig. 5 ) the front edge of which is bounded by the 

curve (2.1). We assume that the cut is rigid and the friction between the cut and the 
medium is zero, Then 9 E 0 and the problem reduces to that of deter~~ng the 

potential 9 satisfying Eq, (1.6 > together with the boundary and initial conditions 

Let us divide the surface 2 into two parts, (1) and (21, as shown in Fig, 5, When 
the potential ‘p is acted upon by the points of the region (1) e we can use for 93 the 

first formula of (2.3 1, i. e. 

(2.6) 

Similarly, under the action of both regions, (1. ) and (2 1, we have for fp 
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where oi is the part of (3 in the plane y = 0 lying outside 2 (see Fig. 5 1 on 
which the quantity dq/dy is not known. 

When y = 0, we find by virtue of the first condition of (2.5 ) that cp is an odd 
function of the coordinate y , therefore cp = 0 on o. 

To find 3cpfdY at the points of cr we perform a limiting passage of the 
point (+,, y,, to) to the surface o. We have 

or 

(2.8) 

Changing the order of integration in the inner integrals of the right - hand side of 

(2.8 ) , we reduce it to the form 

(2.9) 

Qa (to, t; x09 5) = [I - fo (0) + fo (to - t - 1 Lo - 2 1 )I x 

1 Da (to - t, to - t> + l/a2 (to - ty - (x0 - x)” 5 2 dcz] 
0 

fo vo - t - 1x0 - 5 I) - fo (0) = 
t0-I%---21 

s [aof @ - E) + @of2 (t - E)l G 
t 

where due notice has been taken of the fact that the quantity au&%, is equal to 

the ratio of the term within the curly brackets in the expressions for Q, , to 

Jh2 (to - ty - (x0 - s)2 
Using the intrinsic coordinates 

c1 = at + x, Y = at - 5 (2.10) 

we write the formula (2.9) in the form 

am0 Qoa (~0. P; vo, ~1 (2.11) 
Ti- 

+ fz Qoc$ugo> VI 

vv, ~ dv =0 
I 

Qou (PO. P; vo, VI = Q,(to, t; x,,,z) 

where z =aqJ/ay on o, and Y = A (p) is the equation of the front edge of 

2 in the coordinates (2.10 ). 
It is clear that (2.11) is a double integral Abel equation in z , Solving this 

equation we obtain 

Qo,, (;.y;;, El dE 

y 
(2.12) 

Qoa (PO. PO; vo. voj - 1 
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Substituting the value of 2 into the right-hand side of the formula (2.7 ) and per- 
forming the necessary transformation , we obtain the final expression for cp under the 

action of the points of the regions (1) and (2) 

The region xi, - 2 Oa shown in Fig. 5 is called the equivalent domain of in- 

tegration . Formulas (2.6 > and (2.13 ) yield the solution of the diffraction problem in 

quadratures , and (2.13 > determines the potential cp with the reflected and diffracted 

waves both taken into account. 

E x a m p 1 e . let the incident wave be plane and generated by the pressure F (t - tr) 
applied at the points of the straight line 

zsinv+ycosy+&=O (y>O, tl<O) 

where E. is the distance between the straight line and the front point of the cut. 

Using the solution of the problem and assuming that the medium complies with the 
Maxwell’s model, we obtain the following expression for the stresses uii in the reflec; 

ted wave defined by (2.6 ) : 

2 

z 

2 

d Lx.% = sin2 y Qj (19 Y, 21, ayy = ~0~2 y 
c 

Qj (rv Ys t) 
j=l j=l 

(2.14) 

2 

0 
x11 

= sin 2y 
z 

(-l)l+‘Qj(zsY,t), z+,2=zsiny-&t,cosy 
j==l 

Qj (2s Y, t) = - 
t 

exp(-&)F(t-&)W (t-q)+ 
” j -5 2at 

"j/a 

The formula (2.14) contains the relaxation time z which determines the decay of 
stress with time and distance. 

3,Diffraction of a visco-elastic wave on a cut of finite length. 
Let us extend the result of Sect,2 to the case of a cut of width 1. In this case the 

half strip of width 1 in the (z, y, t) -space (see Fig. 6) on which the boundary 

condition (2.5 ) has the form 

a(p/&/ = ---Qo/&/ (Y=o,O,(rgz) 

will represent the surface X . 
let us divide the surface z , as shown in Fig. 6, intotheregions (1) - (3). When 

the potential cp is under the influence of the points of the region (1) or of (1) and (2 ),we 

obtain Cp from the formulas (2.6 ) and (2.13 ). When the points of (1) and (3 ) exert their 
influence, we also have 

rp (zoo, Yo, to) = 
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where the region xi, - Xs, takes into account the diffracted wave from the right- 
hand end of the cut. 

We determine Cp in the same manner when the points of the regions (1) - (4) 
exert their influence, and we have 

We obtain cp when the subsequent diffracted waves are taken into account, in 
the same manner. Using the known values of the potential cp , we can now deter - 
mine the components of the displacement vector and stress tensor. 

We can pose another problem related to the problem in question, 

Let a transverse shear wave in which the displacement is perpendicular to the 

be(;lz)-&ane fall on a cut of finite length. Also in this case only the shear wave will 

. 
The problem can be reduced to that of determining the displacement w directed 

perpendicularly to the (5, Y) -plane. The displacement satisfies the second equation 

of (1.2 ) as written for the transverse potential 9, and the boundary and initial con - 

ditions 
l3W 

- = 0 (Z), w = w, ($4) 
a?4 

Setting W = cp + W, we obtain, for the perturbed displacement of rp , a pro- 

blem analogous to the problem of diffraction of a longitudinal wave on a finite cut 

without friction : we must only replace the operator Lo (5) by MO (5) and the vel- 

ocity a by the velocity b. Other problems of diffraction can also be solved using 

the methods described in Sect. 1 and 2. 

Note. In the continuous electromagnetic media with a finite specific conduct - 

ivity CT , the wave field is described by the Maxwell’s equations. 
For the media with finite conductivity, in particular for metals, the current density 

j is proportional to the electric field intensity E , i.e. j = aE. We can intro- 

duce for such media a vector function A according to the formula ( B is the mag- 

netic induction vector and c denotes the speed of light > 

B=rotA, X+-G%, div A = 0 

and the Maxwell’s equations will then reduce to a single equation 

bA = 4nv aA -,,j-~$ (3.1) 
c= 

where E and p are the dielectric constant and magnetic permeability of the me - 
dium . 

Equation (3.1) is equivalent to the equation of propagation of longitudinal or 
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transverse waves through a visco-elastic body, the material of which complies with the 
Maxwell’s model. The term containing aA / ~3 leads to the appearance in the sol- 

ution of a decaying multiplier, and the latter will depend, in general, not only on time 
but also on the points belonging to the space. The visco-elastic media experience the 

same phenomena. 
Equation (3.1) can be reduced to the form 

and the quantity a is equivalent to the relaxation timeinthevisco-elastic Maxwellian 

body. 
Thus, since the equations describing the process of propagation of the visco-elastic 

and electromagnetic waves through the media with finite conductivity are equivalent, 
it follows that many results concerning the wave propagation and diffraction problems 
in visco-elastic media can be transposed to the corresponding problems in electro - 

magnetic media. 
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